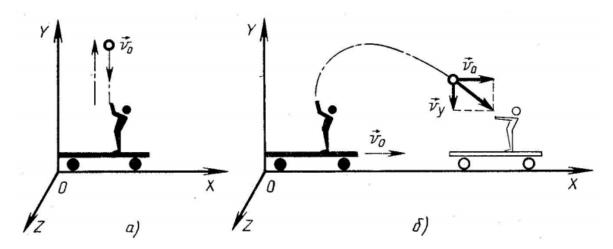
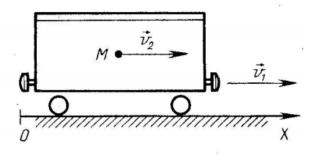
Опорный конспект

Принцип относительности Галилея


Инерциальные системы отсчета (ИСО) — системы отсчета, в которых выполняется первый закон Ньютона — закон инерции. Системы, которые вращаются или ускоряются, неинерциальные. Землю нельзя считать вполне ИСО: она вращается, но для большинства наших целей СО, связанные с Землей, в достаточно хорошем приближении можно принять за инерциальные. Система отсчета, движущаяся равномерно и прямолинейно относительно ИСО, также инерциальна.

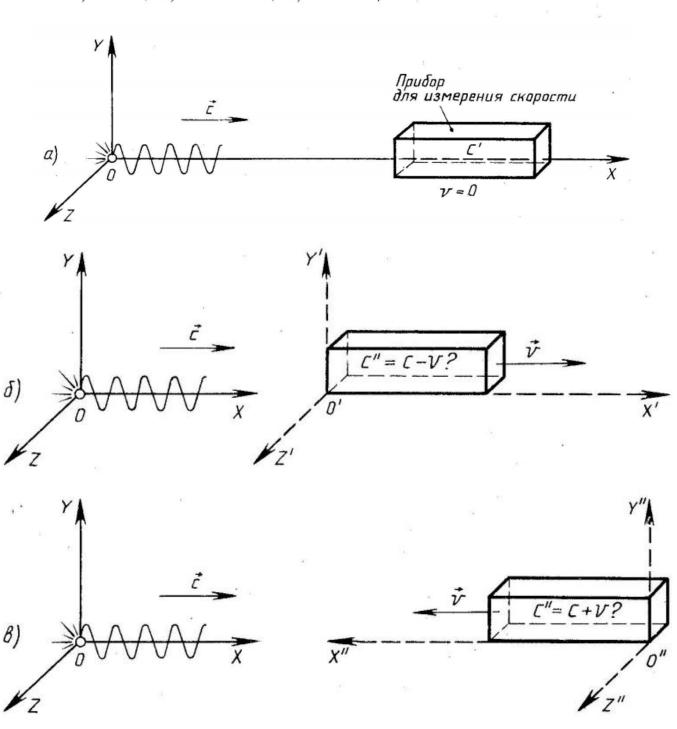
Г. Галилей и И. Ньютон глубоко осознавали то, что мы сегодня называем принципом относительности, согласно которому механические законы физики должны быть одинаковыми во всех ИСО при одинаковых начальных условиях. Из этого следует: ни одна ИСО ничем не отличается от другой СО. Все ИСО эквивалентны с точки зрения механических явлений.

Принцип относительности Галилея исходит из некоторых допущений, которые опираются на наш повседневный опыт. Предполагается, что длина тел одинакова в любой СО и что время в различных СО течет одинаково.


В классической механике пространство и время считаются абсолютными. Предполагается, что масса тела, а также все силы остаются неизменными при переходе из одной ИСО в другую. В справедливости принципа относительности нас убеждает повседневный опыт, например в равномерно движущемся поезде или самолете тела движутся так же, как и на Земле.

Не существует эксперимента, с помощью которого можно было бы установить, какая СО действительно покоится, а какая движется. Нет СО в состоянии абсолютного покоя.

Если на движущейся тележке подбросить монету вертикально вверх, то в СО, связанной с тележкой, будет изменяться только координата ОУ. В СО, связанной с Землей, изменяются координаты ОУ и ОХ. Следовательно, положение тел и их скорости в разных СО различны.


Предположим, что вагон движется со скоростью v_1 . В этом же направлении по оси OX движется материальная точка M со скоростью v_2 относительно вагона. Тогда скорость точки M относительно Земли определяется по форму-

ле $u = v_1 + v_2$ — закон сложения скоростей в ньютоновской механике, где u, v_1 , v_2 — проекции векторов \vec{u} , \vec{v}_1 , \vec{v}_2 на ось OX.

Если исходить из классического закона сложения скоростей для объектов, которые движутся со скоростью, соизмеримой со скоростью света, то прибор должен зарегистрировать:

a) c' = c; 6) c'' = c - v; B) c''' = c + v.

Если исходить из принципа относительности и распространить его на электромагнитное явление, то во всех трех случаях измерительный прибор должен показать

$$c' = c'' = c''' = c$$
.

Получили противоречивые выводы — выяснить истинное положение может только эксперимент.

Специальная теория относительности

Во второй половине XIX в. Максвелл, развивая свою теорию электромагнетизма, показал, что свет — электромагнитная волна. Уравнение Максвелла подсказало, что скорость света $c \approx 3,00 \cdot 10^8$ м/с. Предсказанная скорость света совпала с экспериментально измеренным значением в пределах погрешности. Но в какой СО $c = 3 \cdot 10^8$ м/с?

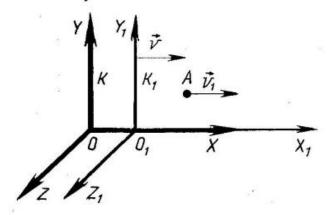
В уравнениях Максвелла нет оговорок насчет относительной скорости. Так как физики рассматривали материальный мир с точки зрения законов механики, предположили, что свет распространяется в какой-то среде, и назвали эту прозрачную среду эфиром, который заполняет все пространство. Предположим, что значение скорости, по Максвеллу, достигается в СО, связанной с эфиром. Тогда скорость света в разных СО различна? Физики принялись определять скорость света относительно эфирного ветра. А. Майкельсон и Э. Морли провели опыт по измерению скорости света в СО, связанной с Землей: в направлении движения Земли и в перпендикулярном ему направлении. Никакого различия в скорости света им обнаружить не удалось. Это означало, что никакой особой среды светоносного эфира не существует. Противоречия между механикой Ньютона и электродинамикой Максвелла послужили стимулом для создания А. Эйнштейном теории относительности (1905).

Постулаты теории относительности

Толчком к созданию специальной теории относительности послужили размышления А. Эйнштейна над некоторыми проблемами электромагнитной теории и теории света.

А. Эйнштейн пришел к выводу, что обнаруженные им в электромагнитной теории противоречия обусловлены предположением существования абсолютного пространства.

Первый постулат: законы физики имеют одинаковую форму во всех инерциальных системах отсчета. Этот постулат явился обобщением принципа относительности Ньютона не только на законы механики, но и на законы остальной физики. Первый постулат — принцип относительности.


Второй постулат: свет распространяется в вакууме с определенной скоростью с, не зависящей от скорости источника или наблюдателя.

Эти два постулата образуют основу теории относительности А. Эйнштейна.

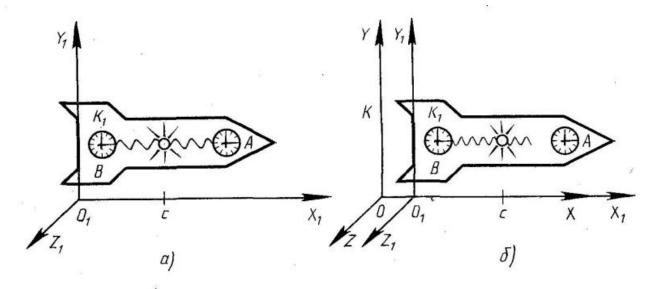
Релятивистский закон сложения скоростей

Классический закон сложения скоростей $u = v_1 + v_2$ не может быть справедлив, так как он противоречит утверждению о том, что c = const.

Запишем (без доказательства) закон сложения скоростей для частного случая, когда тело A движется вдоль оси OX со скоростью v_1 относительно системы отсчета K_1 , а си-

стема отсчета K_1 движется относительно системы K со скоростью v. Скорость тела A относительно системы K обозначим через u. Тогда согласно релятивистскому закону сложения скоростей

$$u = \frac{v_1 + v}{1 + \frac{v_1 v}{c^2}}.$$


Для малых скоростей, если $v \ll c$ и $v_1 \ll c$, то членом $\frac{v_1 v}{c^2}$ можно пренебречь.

Получим классический закон сложения скоростей $u = v_1 + v$.

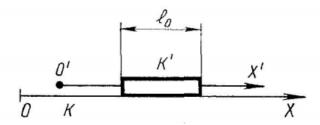
При
$$v_1 = c$$
 и $u = c$ скорость $u = \frac{c+v}{1 + \frac{cv}{c^2}} = c \frac{c+v}{c+v} = c$.

Согласно закону сложения скоростей при любых значениях v_1 скорость $u \leqslant c$.

Относительность одновременности

Согласно представлениям классической механики два события, происходящие одновременно в какой-либо инерциальной си-

стеме отсчета (ИСО), являются одновременными и в любой другой ИСО. Это следует из ньютоновской концепции абсолютного времени. Из второго постулата теории относительности, согласно которому скорость распространения сигналов является величиной конечной, следует, что в разных ИСО время течет по-разному. Поэтому согласно теории относительности события, являющиеся одновременными в одной ИСО, неодновременны в другой ИСО, движущейся относительно первой.


Относительность промежутков времени

Промежуток времени между двумя событиями имеет наименьшее значение в системе отсчета, связанной с движущимся объектом, где происходит исследуемое явление, которое опреде-

ляется по формуле
$$t=\frac{t_0}{\sqrt{1-\frac{\dot{v}^2}{c^2}}}$$
 . Из этой формулы следует, что

длительность одного и того же процесса различна в системах K и K_1 . В системе K_1 длительность процесса больше. Следовательно, он протекает медленнее, чем в системе K. Время, отсчитываемое по часам, которые движутся вместе с телом, называют собственным временем t_0 . Оно самое короткое; наблюдается релятивистский эффект замедления времени $(t > t_0)$.

Относительность понятий длины

В классической механике считается очевидным, что длина стержня имеет одинаковое значение во всех ИСО. Согласно же теории относительности длина тела не является абсолютной величиной, а зависит от скорости движения тела относительно ИСО и определяется по формуле

$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}},$$

где l_0 — собственная длина стержня; l — длина этого стержня в системе отсчета K', относительно которой стержень движется со скоростью u. Из этой формулы следует $l < l_0$, что значит: в HCO, движущихся друг относительно друга со скоростью, близкой к скорости света в вакууме, наблюдается релятивистский эффект сокращения длины тела.

Релятивистский импульс

В теории относительности импульс определяется по формуле

$$\vec{p} = m\vec{u}$$

Величину $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$ называют релятивистской массой, из-

меренной в ИСО, относительно которой движется тело со скоростью u. Следовательно,

$$\rho = \frac{m_0 u}{\sqrt{1 - \frac{u^2}{c^2}}} = Ft.$$

Так как m и F = const, то после несложных преобразований можно доказать, что при $t \to \infty$ получим $u \to c$, что соответствует предельному характеру скорости света в вакууме.

Закон взаимосвязи массы и энергии

Полную энергию свободного тела можно определить как произведение его релятивистской массы на квадрат скорости света в вакууме:

$$E = mc^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{u^2}{c^2}}} .$$

Полная энергия тела пропорциональна его массе.

В той ИСО, где тело покоится, его собственная энергия (энергия покоя или внутренняя энергия) равна: $E_0 = m_0 c^2$.

Если изменяется энергия системы, то изменяется и ее масса: $\Delta m = \frac{\Delta E}{c^2}$. Всякое изменение любой энергии (тела, частицы, системы тел) на ΔE сопровождается пропорциональным изменением массы на Δm .

Для случая движения тела с небольшой скоростью ($u \ll c$) энергия $E \approx m_0 c^2 + \frac{m_0 u^2}{2}$.

Если u=0, то $E=m_0c^2$. Следовательно, m_0c^2 — это энергия, которой обладает неподвижное тело. Ее обозначают как $E_0=m_0c^2$.

Любое тело независимо от его движения и взаимодействия с другими телами и обладает энергией, пропорциональной массе покоя этого тела. Пример превращения энергии покоя в энергию излучения — это реакция превращения водорода в гелий. При превращении 1 кг водорода в гелий появляется дефект массы $\Delta m_0 = 0{,}007$ кг. Соответствующее уменьшение энергии покоя выделяется в виде излучения:

$$E = \Delta mc^2 = 7 \cdot 10^{-3} \cdot 9 \cdot 10^{16}$$
 Дж = 6,3 · 10¹⁴ Дж.

Нельзя говорить, что при этом масса переходит в энергию. В действительности энергия переходит из одной формы (механической) в другие (электромагнитную и ядерную).