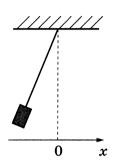

ВАРИАНТ 2

Часть 1

Ответами к заданиям 1-20 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

Каково плечо	l_1 .	если	рычаг	находится	В	равновесии?
realione into io	٠١,	COLLI	pbi iai	палодитон	D	padifobconii.

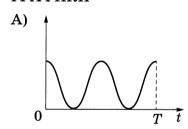
Ответ:	м.

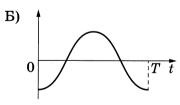

5

6

- Грузовик массой 10 т проезжает верхнюю точку выпуклого моста, радиус кривизны которого равен 80 м, двигаясь равномерно со скоростью 72 км/ч. Из приведённого ниже списка выберите все верные утверждения, характеризующие движение грузовика.
 - 1) Сила, с которой мост действует на грузовик, меньше 40 кН и направлена вертикально вверх.
 - 2) Сумма сил, действующих на грузовик, направлена вертикально вниз и перпендикулярна его скорости.
 - 3) Сила, с которой грузовик действует на мост, направлена вертикально вниз и равна $50~\mathrm{kH}.$
 - 4) Сила тяжести, действующая на грузовик, равна 10 кН.
 - 5) Центростремительное ускорение грузовика равно 2.5 м/c^2 .

Ответ:	


Груз, привязанный к длинной нерастяжимой нити, отклонили от положения равновесия на малый угол и в момент времени t=0 отпустили с нулевой начальной скоростью (см. рисунок). На графиках A и Б показано изменение физических величин, характеризующих движение груза после этого. T — период колебаний. Сопротивлением воздуха пренебречь. Потенциальная энергия груза отсчитывается от положения равновесия.



Установите соответствие между графиками и физическими величинами, зависимость которых от времени эти графики могут представлять.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

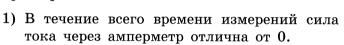
Ответ: А Б

7

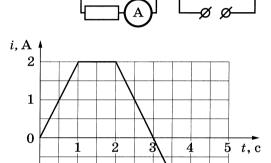
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) проекция скорости v_x
- 2) координата x
- 3) проекция ускорения a_x
- 4) потенциальная энергия груза E_{π}

С идеальным газом провели изотермический процесс, в котором в результате уменьшения объёма газа на $30~{\rm дm}^3$ его давление увеличилось в $2~{\rm pasa}$. Масса газа постоянна. Определите конечный объём газа.


Ответ: дм	I	1
-----------	---	---

8	На рисунке показано, как меня		-
	в зависимости от его объёма в состояние 2, а затем в состоян совершил работу 500 Дж. в процессе 2-3?	ние 3. В ходе процесса 1-2 г	
	Ответ: Дж.		0 V
9	Один моль разреженного аргона у представленном на графике от средней кинетической энергимолекул.	зависимости давления р	
	Из приведённого ниже списк утверждения, характеризующие	<u> </u>	1
	количество теплоты. 2) В процессе 2-3 аргон изотер 3) В процессе 1-2 концентраци 4) В процессе 2-3 температура 5) В процессе 2-3 внутренняя з	я аргона остаётся неизменно аргона остаётся неизменной	•
	Ответ:		
10	В сосуде постоянного объёма аб выпустив при этом 2/3 газа из с газа в сосуде и его внутренняя	осуда. Как изменились в рез	
	Для каждой величины определи	ите соответствующий характ	ер изменения:
	1) увеличилась 2) у	меньшилась 3) не и	изменилась
	Запишите в таблицу выбранные в ответе могут повторяться.	цифры для каждой физичес	ской величины. Цифры
	Плотность газа в сосуде	Внутренняя энергия газа в сосуде	
11	Два неподвижных точечных за которых равен F . Во сколько р уменьшить в 2 раза и расстояни	раз уменьшится модуль этих	сил, если один заряд
	Ответ: в раз(а	n).	
12	Две частицы с зарядами $q_1 = 2c$ перпендикулярно вектору магн соответственно. Определите отно	итной индукции со скорост	сями $v_1 = 1,5v$ и $v_2 = 2v$
	со стороны магнитного поля в а	2	
	Ответ:		


13 Идеальный колебательный контур состоит из конденсатора ёмкостью C и катушки индуктивностью L. Во сколько раз уменьшится частота собственных электромагнитных колебаний в этом контуре, если его индуктивность увеличить в 18 раз, а ёмкость уменьшить в 2 раза?

Ответ: в раз(а).

На железный сердечник надеты две катушки, как показано на рисунке. По правой катушке пропускают ток. Сила тока в правой катушке меняется с течением времени согласно приведённому графику. На основании этого графика выберите все верные утверждения о процессах, происходящих в катушках и сердечнике. ЭДС самоиндукции можно пренебречь.

- 2) В промежутке времени между 1 и 2 с показания амперметра равны 0.
- 3) Величина силы тока в левой катушке в промежутке времени 0-1 с в 2 раза меньше, чем в промежутке времени 2-4 с.
- 4) В промежутках времени 0-1 с и 2-3 с направление тока в левой катушке одинаково.

5) В промежутках времени 1-2 с и 4-5 с индукция магнитного поля в сердечнике постоянна.

-1

0	твет:	

Отрезок провода с большим удельным сопротивлением подключён к клеммам источника постоянного напряжения. Отрезок провода заменили другим проводом такой же длины и из того же материала, но вдвое меньшего диаметра. Как изменились в результате такой замены сопротивление внешней цепи и сила тока во внешней цепи? Считать, что напряжение на внешней цепи остаётся неизменным.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Сопротивление	Сила тока		

16	Период полураспада изотопа актиния $^{225}_{89}{\rm Ac}$ равен 10 дням. Какая масса этого изотопа осталась через 40 дней в образце, содержавшем первоначально 28 мг $^{225}_{89}{\rm Ac}$?
	Ответ: мг.
17	При исследовании зависимости максимальной кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещали через различные светофильтры. В первой серии опытов использовали светофильтр, пропускающий только зелёный свет, а во второй — пропускающий только ультрафиолетовое излучение. В каждом опыте наблюдали явление фотоэффекта и измеряли запирающее напряжение.
	Как изменились частота световой волны, падающей на фотоэлемент, и максимальная кинетическая энергия фотоэлектронов при переходе от первой серии опытов ко второй? Для каждой величины определите соответствующий характер её изменения:
	1) увеличилась 2) уменьшилась 3) не изменилась
	Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
	Частота световой волны, Максимальная кинетическая падающей на фотоэлемент энергия фотоэлектронов
19	Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны. 1) Работа силы тяжести по перемещению тела между двумя заданными точками зависит от длины соединяющей их траектории. 2) При прочих равных условиях диффузия протекает в твёрдых телах значительно медленнее, чем в жидкостях. 3) Весь электростатический заряд проводника сосредоточен в его центре масс. 4) Свободные электромагнитные колебания являются затухающими, если электрический заряд на обкладках конденсатора с течением времени меняется по закону синуса или косинуса. 5) Атомы изотопов одного и того же химического элемента различаются числом нейтронов. Ответ: Определите показания амперметра (см. рисунок), если абсолютная погрешность прямого измерения силы тока равна половине цены деления прибора. Амперметр проградуирован в амперах.
	половине цены деления прибора. Амперметр проградуирован в амперах. $0 = 0.2 = 0.2$ Ответ: (\pm) А.
	В бланк ответов № 1 перенесите только числа, не разделяя их пробелом или другим знаком.

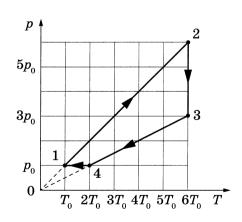
20

Школьнику необходимо на опыте обнаружить зависимость объёма газа, находящегося в сосуде под подвижным поршнем, от температуры газа. У него имеется пять различных сосудов с манометрами и термометрами. Сосуды наполнены равными массами различных газов при различных температурах (см. таблицу). Какие два сосуда необходимо взять ученику, чтобы провести исследование?

№ сосуда	Давление, кПа	Температура газа в сосуде, К	Газ в сосуде
1	100	280	кислород
2	50	270	кислород
3	100	280	азот
4	50	300	кислород
5	60	320	азот

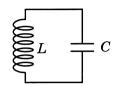
В ответ запишите номера выбранных сосудов.

Ответ:

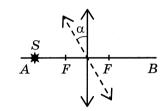

Не забудьте перенести все ответы в БЛАНК ОТВЕТОВ № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

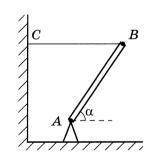
Для записи ответов на задания 21−26 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (21, 22 и т. д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.


21

Один моль одноатомного идеального газа участвует в циклическом процессе 1-2-3-4-1, график которого изображён на рисунке в координатах p-T, где p — давление газа, T — абсолютная температура. Опираясь на законы молекулярной физики и термодинамики, сравните модуль работы газа в процессе 2-3 и модуль работы внешних сил в процессе 4-1. Постройте график цикла в координатах p-V, где p — давление газа, V — объём газа.



Полное правильное решение каждой из задач 22-26 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.


- Столкнулись два одинаковых пластилиновых шарика, движущихся по гладкой горизонтальной поверхности, причём векторы их скоростей непосредственно перед столкновением были взаимно перпендикулярны и вдвое различались по модулю: $v_1 = 2v_2$. Какова скорость более медленного шарика перед столкновением, если после абсолютно неупругого столкновения их скорость стала равна по модулю 4.5 m/c?
- $oxed{23}$ В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону $U_C=20\cdot\sin(5000t+\pi)$. Максимальное значение силы тока в контуре $I_{\max}=0.2$ А. Определите индуктивность катушки.

- В герметичном сосуде находится водяной пар при температуре $t_1=150~^{\circ}\mathrm{C}$ и давлении $p_1=8~\mathrm{k\Pi}$ а. Определите объём сосуда, если при охлаждении пара до температуры $t_2=20~^{\circ}\mathrm{C}$ в нём сконденсируется $\Delta m=0.9~\mathrm{r}$ воды. Давление насыщенного пара $p_{\mathrm{H}2}$ при температуре t_2 равно 2,5 кПа. Объёмом жидкости, образовавшейся при конденсации пара, пренебречь по сравнению с объёмом сосуда.
- Точечный источник света S расположен на расстоянии 40 см от оптического центра тонкой собирающей линзы с фокусным расстоянием 0,2 м на её главной оптической оси AB. На сколько сместится вдоль прямой AB изображение источника, если линзу повернуть на угол $\alpha = 30^{\circ}$ относительно оси, перпендикулярной плоскости рисунка и проходящей через её оптический центр? Сделайте пояснительный чертёж, указав ход лучей в линзе для обоих случаев её расположения.

Тонкий однородный стержень AB постоянного сечения массой 2,7 кг шарнирно закреплён в точке A и удерживается горизонтальной нитью BC (см. рисунок), угол наклона стержня к горизонту $\alpha = 45^{\circ}$. Трение в шарнире пренебрежимо мало́. Найдите модуль силы \vec{F} , с которой шарнир действует на стержень. Сделайте рисунок, на котором укажите все силы, действующие на стержень.

Обоснуйте применимость законов, используемых для решения задачи.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.